Laser desorption postionization mass spectrometry of antibiotic-treated bacterial biofilms using tunable vacuum ultraviolet radiation.
نویسندگان
چکیده
Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0-12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics and extracellular neutrals that are laser desorbed both from neat and intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.
منابع مشابه
Differentiation of microbial species and strains in coculture biofilms by multivariate analysis of laser desorption postionization mass spectra.
7.87 to 10.5 eV vacuum ultraviolet (VUV) photon energies were used in laser desorption postionization mass spectrometry (LDPI-MS) to analyze biofilms comprised of binary cultures of interacting microorganisms. The effect of photon energy was examined using both tunable synchrotron and laser sources of VUV radiation. Principal components analysis (PCA) was applied to the MS data to differentiate...
متن کاملBrominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry
The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 – 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by ≤8 eV s...
متن کاملNonresonant Femtosecond Laser Vaporization with Electrospray Postionization for <italic>ex vivo</italic> Plant Tissue Typing Using Compressive Linear Classification
T detection and identification of molecules within complex biological matrixes (i.e., plant tissue) requires homogenization, filtration, and liquid extraction of the sample to prepare for analysis using techniques such as gas chromatography/mass spectrometry (GC/MS), liquid chromatography-mass spectrometry (LC-MS), capillary electrophoresis-mass spectrometry (CE-MS), and LC-NMR. Direct analysis...
متن کاملVacuum ultraviolet single photon versus femtosecond multiphoton ionization of sputtered germanium clusters.
Neutral atoms and clusters desorbed from a solid germanium surface by ion bombardment are detected by laser postionization and time-of-flight mass spectrometry. Two different photoionization schemes are compared which are generally believed to be candidates for the 'soft' ionization of polyatomic species without significant photon induced fragmentation. First, a single photon ionization process...
متن کاملSolid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry
A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 82 17 شماره
صفحات -
تاریخ انتشار 2010